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In this paper the flow of a viscous heat-conducting gas about a circular 

cone without angle of attack at high supersonic speeds is studied. The 

whole disturbed region of flow is divided into two sub-regions separated 

by a distinct boundary [ 1,2 ] : a viscous region in which the flow is con- 

sidered to be laminar and is described by the boundary layer equations, 

and a non-viscous region in which the flow is described by the equations 

of an ideal gas. 

Only the case of weak interaction is investigated, i.e. the region of 

flow considered is sufficiently far removed from the nose of the cone. 

For this the quantity c = 6/@L is considered to be small, where L is the 

distance of this region from the nose along the axis of a cone of half- 

opening angle 8,. 6 is the thickness of the boundary layer at this point 

and 8, = tan 8,, and the problem is solved by the method of small per- 
turbations (in a construction similar to earlier solutions of the problem 

of a plate [ 3.4 1 and a wedge [5 1 ). Terms of order E 2 and higher are not 

taken into consideration. 

The solution of the equations of an infinitely thin boundary layer on 

a cone - this problem reduces to the problem of a plate [6 I - and the 

tabulated conical flow of an ideal gas [7 I represent the fundamental 

solution. The surface of the cone is assumed to be isothermal or heat- 

insulated. 

We shall employ two systems of coordinates with origin at the apex of 

the cone: the cylindrical coordinates x1, r, + for the non-viscous region 

and the conical coordinates Z, y, C# for the viscous. Here xi is measured 

along the axis of the cone, x along the generator; r is the distance from 

:,p”,tn; :,“dtli; yBT;$. y to the surface of the cone. We shall designate by 

the projections of the velocity on the axes x1, x and 

r, y respectively. The indices m, 6, w and k will refer respectively to 
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quantities of the oncoming flow, to the edge of the boundary layer, to 

the surface of the cone and to dimensional quantities at the surface of 

the cone in the case of flow of an ideal gas about it. 

1. Non-viscous region. lhe flow about a circular cone is described 

in the variables (n,, /3 = r/xl) by the system 

Q’= - 
U&” i’ 

pl [aoZ (1 + p, - (p&J - 2’@j \ a0 
zrxp_o 

J PO 

PO' PO’ -_=%-_=x $uo -vo . I 

PO PO 
a*o, 

a0 
UO’ = - i?JV,’ (1.1) 

Here primes indicate derivatives with respect to /?; density, velo- 

cities, pressure and distances are referred respectively to p,, lb,, 

p,v,* and L. 

For /3 = & = tan BO we have 

uo = Bouo, 2-C)’ = -$gp po’ = p”’ = 0 

.UO(~)’ = Uo’ COS 0, + vu’ sin 4, = 0 (1.2) 

In the neighborhood of /3 = PO for a thin 

equation of (1.1) taking (1.2) into account 

formula gives good agreement with the exact 

shock (with an accuracy of about 5 per cent 

cone integration of the first 

gives uO = uOp~/p. This 

solution up to the compression 

for M, PO = 1 and exact agree- 
ment for larger values of 1, PO). At the compression shock the quantities 

uO, p,,, pO and uO are related to the angle O* of inclination of the shock 

to the axis of the cone through the usual relations. 

To determine quantities of first order of smallness we consider the 

cone to be sufficiently thin and we employ the system of equations 

simplified on the bases of the law of plane sections [g 1. 

The value of u is determined from the Bernoulli equation. We seek a 

solution of (1.3) in the form 

v=v,+EL 
‘r/G + O(% p’po+E+ + 0 (E’) 

21 

u= 1+++O(E2), 
Xl 

P=Po+E+l+qE2) 

T = To + ~2 + 0 (E') 



1446 Y.Y. Lunev 

The functions II,@), p,(p) and p,(p) satisfy the system 

hF~1 + “d-w - ? (> Pl + af4> = 0 (1.4) 

In these equations we take the solution of equations (1.1) for vO, pot 

etc. 

Correspondingly, the velocity field in the boundary layer can be re- 

presented in the form 

&I = z@ -+- &q(r) + . . ., rf0 zzz &r,(r) + . . * 
i 
UO(I), * 1at: y-+ys 

0 Ir 

From the condition of continuity of velocity at y = ya we have 

Y,u, (PO) -t stl,(r) sin ea + EZ+) (.2,is) cos eO = 

(1.5) 

As is well-known 16 f 

where vP is the dimensionless normal component of the velocity at the 

edge of the boundary layer on a plate. Hence 

EZ/‘l Igo) = v, [I + 0 (E $ #] 2s vo (1.6) 
. 

Let the equations of the form of the shock and of the angle of its in- 

clination be 

'&en, after linearizing the relations at the shock, we obtain for 

(3=p* 

(1.7) 

Pl (P’> = [&-$ - 2Po’ ca*,] 01 

91 = 
[ i 
&- 1 + g&j%‘) - 22); (B’)] 01 

,’ 

p1 = 
[ 

4Po 
2 + (24 - 1) iw,*e*z - 28+p,'(p*) 

I 
$ 



Flow of a viscous heat-conducting gas about a cone 1447 

Equations (1.4) do not change form with the substitution of p /0,, 

p@, and +$ for pI, p 
ka 

and vl; in this sense 8, vanishes in '( 1.7) and 

the problem reduces to a uchy problem with given values at the point 

/3 = /3*.The quantity 0, is determined from (1.6). 

The last equation of (1.4) has an integral, which for v0 = ~&?~*//3 

and taking (1.7) into account assumes the form: 

Pl -- 
PO 

%k. =k(k- 1)-l” =0(p) 
(1.8) 

k= 
4x(x - 1) (A&3*2- 1)2 (p*“/pO”- l)l/* 81 

(2XM,3*2 - x + 1) [2 + (x - 1) A4,2e*21 o* 

Taking (1.8) into account the system (1.4) reduces to a system of two 

equations: 

Pl ’ 

.K ( 1 2?&+2a,‘)v,-~(p-vV,) x 

x ( -A; - X-l I PI 
-----Do g+g(P-%b(B) x > 

(1.9) 

u1’ = r _ $ _ P uoI + Vo’B (p _ uo) (; + 2vorjj D1 + 

aoa v0a02 

+ [; - f$ (P - d2 (L-q 4)jE + $$ (p - 210)% (p) 

The temperature in the stream is determined from the equation of state 

and formula (1.8): 

(1.10) 

Equations (1.9) do not have singular points, therefore p, and T,, are 

bounded; while, on the contrary, T,, + a~ as p+ p,,. The quantities 

TAk and T12/ \lxl represent, respectively, potential and vertical 

(constant along stream-lines) elements, 

The unbounded growth of T12 is evidence of the invalidity of applying 

the method of small perturbations for (3 = PO. However, one can not be 

concerned with the behavior of the solution in a region which in reality 

is occupied by the boundary layer. For at the edge of the boundary layer 

the value of T12 will be of normal order because of the small negative 
power in the expression for w. From the Bernoulli equation and (1.10) it 

follows that 

where 
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1 PI (PO) u,,(l) z ~ - 

~JwZ PO (Bo) ’ 

(1.11) 

u,,(‘) = 
0 (Br) 

jJ‘p= 
ukaPl 

x(x-l)M~1/~ ’ xp)( cos’ 00 

According to the similarity law for the flow about thin bodies [ 9 1 
for MJ?, - 1 the quantities p,,/O,,‘, vo/do and pO depend only on the vari- 

able 

t = (P-PO)/@* -/%I) 

and the parameter M,Oo. Let 

J-J = (PI/P,) (%A)7 W = v,/O, 

'Ihen equations (1.9) take the form 

P’ = A,(t) w -+- B,(t) P _I- c, (t) 

W’ = A, (t) W + B,(t) P + C,(t) 
(1.12) 

'Ihe coefficients A(t), B(t), C(t) 

kO,/6, and t*=,fl*/&, 

and the quantities P(l), W(l), k, = 

will depend only on the parameter M,8,. 

Consequently, the solution of the system (1.12) also depends only on 

MOO%* 

4 

lJz5 05 075 / 

Fig. 1. 

'lhe functions P(t) and N'(t) for various values of M are given in Fig. 1; 
the quantity t* is given in Fig. 2. From (1.6) for @ = PO it follows that 

(1.13) 

2. Viscous region: basic equations. 'Ihe system of equations of 

a boundary layer of non-zero thickness on a cone has the form [2 1 
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Here i, p and u = const are the enthalpy, viscosity and Prandtl number*, 

respectively. Modifying the well-known Crocco transformation, we shall 

replace the variables (x, y) by (t = x2/3, u(l)) and the unknown function 

u(l) by r = ~/~)(~~/~~). Int ro ucing the stream function 'Jj we obtain d 

from the first and last equations of (2.1) 

1 aY --= ‘(2 -tK)$+$+(l+K)], i-E-=- p&l) 

i30 x $O a&) T 
(1+ K) (2.2) 

Here K= y/pox-~, t)what follows we shall everywhere replace the 

dimensional quantities u * P* 2, F? P, 7% Xf y without changing their 

designations by the corresponding dimensionless quantities: 

#JO coseo _!L i * - Y TCOS20, LJm x Y 

Uk ’ p&. ) ih_’ ph. ’ pmiJco* ’ pk”k2 
> T’ 

~, J-$ - PkUkL 

pk case* 

We shall make the transformation of variables (f, u(l)) + @, 71 = 
&)/'u$~)) and we shall introduce the designations 

F (4 PI = p*k, aF (6 p) 
fl K = EKE, u&l) = us 

, ap = 

(For air over a wide range of temperatures 

be exploited below.) 'lhen after eliminating Y 

usual transformation we obtain the system 

& !(I + 4) 71 + wi3 $ (+ F) = 

aF/ai << 1, and this will 

from (2.2) and after the 

(2.3) 

Us a =*5 E 
0)~; ;+ + (x - I) M20us2~2 - or@F $ = 

* For gases (I = o(i, p) is a slowly varying function and the influence 

of the variation of u on the solution can be studied by the method 

of 110 1. 
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The first equation of (2.1) and the temperature conditions give for 
n=o 

According to (1.2) one should set 

PIP0 = 1 +- EPl Go) lI/~Po (PO) 

in (2.3) and (2.4). 

3. Viscous region: solution of the equations. We shall seek 

a solution of the system (2.3) in the form 

r=T*+&‘Cr+ . . . . i = i* + &il + . . (3.1) 

Let 7 * + 0, i* + 1 as n -) 1. Then, setting 

T* = g, (‘(1) 1/% i+ :z i* (+q) 

and rejecting quantities of order c in (2.3), we have for g,(q) and i*(n) 

g,g,” =- - yiF (i,, po), (g,’ (0) = g, (1) = 0), i* = 1 -I- 3 (x - 1) M2J, + eJ, 

J, = 5 g;-1 ( g,;‘-,=dr,dr;, J, = 1 g,:-ld~,,, 
3 0 

i, = 1 $- 0(x- 1)~pM2.~1(o) 

‘Ihe solution of this system for an arbitrary form 

in references 10 and 11. 

(3.2) 

of F is considered 

We shall consider the conditions for r 1 and i, at the outer edge. 

Transition from the 51 -plane to the physical plane, i.e. to the xy-plane, 

is effected for E f 0 and for c = 0, respectively, by the formulas 

9 7 

Y=L+dT, I* (i,. P0) ,& = 
- 

zVfio 7 
&” (3.3; 

0 g* 

To some fixed point (x, y) there corresponds a value of n (x, y) 
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The functionqo(y/\lx) is determined from the second formula of (3.3), 

and qI from the condition of equality of the right-hand sides of both 

formulas. 

i*(q,) 

At this same point the functions T and i are equal to T$;T~) 
and for 6 = 0 and to 

z r= =+ (%I) ++ 2+ +, i=i*(QJ+&(il+it'7/I) (3.5) 

in the general case. Near the edge we have c%z,(~)/c?@-- EP, dT,/d&-_cfl 
for the behavior from within [see (1.2 ] and 

du,(l)/dy - g’, z2c 0, ai,/ay - g”, z 0 

for the behavior from without. Consequently, the boundary conditions do 

not change upon transferring them from the true edge of the boundary layer 

to the ya-edge at 6 = 0, determined according to (3.3), and 

Ur& = u,,(l) -/- ?+J'), i c- is -I- ~l’,/l’, f/z at y = ys 

Because 110 1 
u,(‘) = 1 + g,/g,’ 52s 1 at qz-1 

the boundary conditions for r1 and i, in accordance with (3.4) and (3.5) 

must conform to the requirement 

'4"= 0, iI + Qi*‘Z T,/11’,& at 7j=7jr18zl (3.6) 

moreover, we will require (and, consequently, determine ys) that these 

conditions be satisfied at T)S = 0.98 + 0.999. 

Substituting (3..1) into (2.3) and setting the sum of the terms of 

order 6 equal to zero, we obtain a system of linear partial differential 

equations for r1 and i,, which can be separated into three independent 

groups setting 

~1 = 31 + 22 + b 4 .= ill + h2 + i13, 71 = rill + "'rl2 + ^lj13 

Here 7 , tll 4 r12’ i,, are stipulated, respectively, by the poten- 

tial and %tical components of the non-viscous flow, and r13, iI3 by the 

presence of the quantity K, in the equations. In accordance with (1.10) 
and (3.3) we have for /3== & 
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Because ya//!? xN t, 

of smallness 63 Y 4 
the quantity cT12/Toqx is formally of the order 

at y = ya, i.e. its order is lower than that of 

cT,,/T, VX. However, this difference is inxnaterial, since ~~~'~-1 for 
values of c of practical interest. Noting that 

XV: = 3’Ja ;‘A , EK 
0 

_ Y _ L E Rs --‘h 
B”X ( ) PO 2 

we will seek solutions in the form 

T1, = [/‘, (7J - (x - 1) Ill? (1 - 2oJ,)] 

c,:; = 

[]‘y (7,) - ad/&-‘wl] (3.7) 

:;-~;q,r~~-l'O 
5L13 = - In (a 

:;-‘ar- n i 
&,1/H 

7111 .= 
PI 

Y-M’jl(, -4.1 (7,) 

.,-I ;,-L,‘, “-2 ., 
‘/,I2 = ~ 71.2 (7,), 27,,:: ~ 

5,, lfr:',K 7,*3(7l) 

'bus, the problem reduces to the solution of three systems of the form: 
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Here and in what follows* 

F = F(i,, pr), 

1453 

f = f (i,, Pk), 

From (3.7) and (3.3) it follows that 

g* q P&l 

-I 1*-c-- p = - (S dq- i[i,-(~-_)~'(I-ol,!l~~~- {S$) (3.9) 

0 0 0 g* 

Taking (3.7) into account the conditions (3.6) and (2.4) take the form: 

jr- 20(X- 1)M2J, + T*ii*' = 0, j2 - 2ahs-‘14JJ, + +q2ie’ = lzs-‘J4 
(3.10) 

j3 + r.d, = 0, ~i.~ = 0 nPH rl= Ts 

g*g1’ = - ; P, g,' = 0; g,'=-- (3.11) 

jr +(x-1)&P= ~G(x-I)APJ~, j2 = 2ohs-‘f4J1, 

js = 0 HnlZ i,‘= 0 npn q= 0 

Let g,* and ja* be solutions of equations (3.8) for q5, = \IJ = 0, which 

satisfy the conditions ga*(O) = j *(O) = 1 and g,*'(O) = ja *'.ro) = 0. 

Then the general solution of equations (3.8) has the form (A,, Bn and CW 

are constants): 

dr,drl - gm’ (0) grn” + &lgm* (3.12) 

i = jm*Hm (q) + Cm jm’* + & jm* (3.13) 

Here ga** and jn** are solutions, which are linearly independent of 

gal* and ja*, of the same homogeneous equations. It is easy to verify that 

as n + 1 the solutions of the first and second homogeneous equations of 

(3.8) have the form 

const (-gg,‘)%, const g*(-gg.')-(l+%) 

const (-g*‘)--Pm, const gro(-gg.')Pm-l 

l Without the restriction that dF/ai << 1 the right-hand side of c$, 

would contain terms of the form f,(dF/di) and the solution of the 

system (3.8) would be considerably complicated. 
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From the structure of the equation it follows that g,* is an increas- 

ing function and, consequently, has the form: const (-g*'Yrn for 71 = 1. 

Both of the solutions jn* and jn** decrease as q + 0, but as shown below 

in the appendix j,* -$ const t-g* ')-&I exactly. For 9 = 1 and CT < 2 the 

following is valid*: 

p = 1 + p.' (i, - l), y1 = const (1 - u) g,” + const g, 

i*- I= const $ , 
C 1 g1- - A,g,* + const -&I + const g, 

i j &‘z 1 

9 1 z const A,g.a-l (- g,‘)v* + const (-p--l/g,‘) + const (- g,“/g,‘) 

The integral H, converges for (T >‘ l/2 and diverges for u < l/2. 

Putting B, = B,, + B,,, where B 

u < l/2, we have for 7 = 1 

= - H(1) for D 9 l/2 and B,, = 0 for 

il = const A,j’,q o---1+ C* const, 0 m-1 0. [g*‘3(0- I)(20 - 1)1-l + 

+ con.4 g,” (- g,‘)-l i- Blzjl* (3.14) 

For u < 1 these formulas are valid for those values of 77 for which 

(l- o)g* '+A, (2a -l)g*'2 >‘ 1. We obtain the asymptotic form for jel 
at u = 1 or u = l/2 by formally setting (1 - u)g*‘? = 1 or (2u- l)g*'z=l, 

respectively, in (3.14). From (3.9) one can obtain 

Q = const A, (-g,‘)-‘” + const g,” [g,‘” (0 - I)]-1 + const g,g,‘. 

The function C-g,')- l/9 decreases very slowly ((-g*')-l'j = 0.69 for 

q = 0.999 if F = 1). 'Iherefore, from the condition that vl, = 0 it follows 

that A, = 0. For 7 = 1 a reasonable relation, which we advance without 

proof, is 

jm 'H, + rlern i*’ = const im’ + 0 (g,“g,‘) (3.15) 

This relation gives the possibility of determining Bn from the condi- 

tions (3.10) for any value of u. If u > l/2, then ~,~i,'+ 0 and j, = 0 as 

9' 1; consequently** B, = - H,(l). 

* 

** 

The correctness of the asymptotic evaluations cited below can be de- 
monstrated by successive application of the L’Hopital rule and the 

Cauchy mean value theorem. 

For 111 = 1 the equations (3.8) a.re identical with the equations of [ 10 1, 

where a l = 2M + 1. /jl = - 2M, and M is real. In [ 10 1 the condition 

‘ln1= 0 for T] = 1 is used. This condition is valid as stated only for 
u > l/2, and for greater rigor (3.10) would be used. 
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For m = 2 the solution of equation (3.8) has the form: 

gz = - k?'qg,' + Asga* 

which when taken into account gives for 77 = 1 

rle2 = hi?’ + $ &.g2*‘, g,’ = a, (- g,‘f’, (ha = -g,’ (~8) + h,, h, = const) 

Setting n,,(ng) = 0 and consequently j,(na) = ha+ we will have 

A, = - + ( h1’4gag,“)&,8 --+,[-g;s'"")3': &=~$&H.('13 (3.16) 

Within the limits 76 = 0.98 - 0.999 the value of A, does not change 

materially; however, because h, >> - g, ‘(~1 for M >> 1, it is important 

to distinguish it from its limiting value as 78 + 1 which is equal to 

- l/so. Although HZ has the singularity of form [g"-l/(l - o)g*'?l as 

n + 1, the value of B2 also varies little for 16 = 0.98 - 0.999. Accord- 

ing to (3.15) the value of B, is, as a matter of fact, finite at 76 -+ 1, 

which is different from the value chosen by us in (3.16). 

For m= 3 formula (3.12) transforms to 

g, = - g,h -;- K&d + A,g,' 

where H,(n) designates the first integral of the right-hand side of (3.12), 

in which - 4/3&hFg is substituted for the function 9,. For n = 1 

g, = &r* + 0 kg*'), j3 = const A3il"g? + H3 (1) il* + 0 (g,a/g,'2)+B3j,' 

+fjs3 = const A,(-g'*)-I"+ O(g,g,') 

From (3.10) it follows that A, = 0 and B, = - H3(1). We note that 

j, = 0 for u = 1. 'lhe constants C, are chosen from the conditions at n= 0 

and are equal to zero for j,'(O) = 0. 

It should be noted that for m = 1 or m = 3, just as in the fundamental 

approximation, the requirement of continuity of the velocity and tempera- 

ture fields at the transition from the viscous to the non-viscous region 

reduces essentially to the boundary conditions of the asymptotic boundary 

layer. In the case of m = 2, the scheme of a boundary layer asymptotic in 

the classical sense does not provide a practical coincidence of the para- 

meters of the viscous and non-viscous solution at the rationally chosen 

limit of the division between them, because the trendI?: the functions to 

their maximum values at T] = 1 is so slow (g,--(g*')- , q*+ (-g,‘)-5’4 
as 77 + lifA,=- l/so) that these values can formally be attained at 

values of y far removed from the edge of the.boundary layer. 

In conclusion we will derive a formula for V,,. From the first and last 

equations of (1.1) for a plate (dp/&)= 0, r + m) there follows in 

dimensional quantities 
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Substituting here au/ax = - (Jy/dx)/(dy/du) and transforming to di- 

mensionless quantities we obtain 

ov _ g*’ + pqh g’+h 
1 

-9 
1/2xR 

up = m = -& , ho= \ y dq 
0 l 

4. Analysis of results. To obtain more general, though also less 

exact, formulas for numerical calculations it was assumed that F = F, = 
const, ,u = F,i. In this case [ 10 1 

g,= 

g1= 

82' 

jl= 

j2= 

j3 = 

v/Fogo. ho= r/E [I,+ 5 (x - 1) API,+ el,], h = - JfKg,‘+ ho = JfEhl 

r/K [ (O.4xW - 1.~)~o+gl,+j~--)~*g,2+~gl,l. 

-Ftl’G” [wo’+ $ (--go%%,‘] , g3= F, lg31+ (x- 1) M2g32 + eg331 

b-- 1)Jvn-t b-- 112Jf4j~2+ (x-- 1)M2ej13 + e2j14+ ejle + Gj? (4.1) 

~F,W+[~2~ t t,_~JM2j22 + Gj,"] 

VCll+~) M2j3,+ (x-- 1J2M2js2+ e(X-- 1)M2j33+ e2j34+ ej3,+ C3jl"l 

The function go(n) satisfies equation (3.2) for F = 1. All of the 

functions entering in the right-hand sides of (4.1) depend only on o. 

For u = 0.725 the values of some of these functions for n = 0 are listed 

in Table 1. 

TABLE 1. 

g,i j g,2 j gm3 / j,, 1 h2 / ho / h4 / b5 1 jZ 

0.668 0.211 0.500' -0.0036 -0.0071 0.630 1.62 1.12 1.74 
-0.543 0.97 1.67 

0.488 0.174 0.450 -0.060 -0.110 -0.048 -0.061 -0.121 

[lo(l) = 1.22, I,(l)= 1.08, It(l) = 1.87, q, = 1,431 

‘lhe magnitude of the induced pressure on the surface of the cone 

(P - P 
s 

)Po and the thickness of the boundary layer are determined for 
u = 0. 25 and K = 1.4 from the formula 

(4.2) p--o - ( 0.515 + 8.3 -& coca - 0.86 PO ~ozcc2) / a,62 

YS 
Box C - = 0.34 + 5.5 Mq 03 00 + 10.7 ~o%2)a,Q (4.3) 
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In the equalities (4.2) and (4.3) the following designations have been 
assumed: 

X-l 
Qy&y- 

u cr,~Q’o f’~ 

co 0 2802 XXP, 

Here and in what follows i. and x are dimensional quantities, the 

coefficients a. depend only on IV,& and are presented in Fig. 2. The 

heat flow to tie surface in dimensional quantities is equal to q = - 

rg(r/u)(di/c$)i,= o, from which there follows 

91 2-z 
E ai1 71 

- 
Qo 

- + E - - EUls 
i. a7 70 

7)30 9 Ql = 911+ Q12 + 413 

lhe quantities gll, fil, etc. are determined for the same o and K from 

the formula 

5 = [4.55(M+--)2+ 3.86M+m + 0.222]cc,s 

ET12 
-=- 

70 ( 
0.085 + 1.35 +j%&,z~'~~ 

03 co 

C’ClS 
- = 2.84& + 0.123)@ 

( 

+’ = [-0.9; c&y+ 3.27 & 2 + 0.207]a,Q 

6913 - = 
90 ( 

2.98kz + 0.161)asQ 
0003 I 

(4.41 

'lhe terms in (4.2) - (4.4) which contain PO2 are small and for M, >> 1 
imnaterial (in the formulas (4.4) these terms are omitted). Ibis fact is 
confirmation of the similarity law of the supersonic flow of a viscous 

gas IA 2 1, in accordance with which similarity criteria there are the para- 

meters 

The calculations showed that the equilibrium temperature of the sur- 

face is practically independent of c and remains equal to its value at 

E = 9. The terms containing jll, j12,j111 j3* are negligibly small in 

comparison to the others in the expressions for qIm and are omitted in 

(4.4). From (4.4) it follows that 712/r11- q12/q11- &“M”~R’~ << 1 

for Rm< lOa and Mm< 20. Consequently, the turbulence of the flow due to 
the curvature of the shock wave does not show an appreciable effect on 

the characteristics of the boundary layer. 

From the formula (4.4) it foll ows than an increase in the boundary 
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layer thickness for M, >> 1 leads to an increase in the frictional re- 
sistance and, particularly important, to an increase in the heat flow to 

the surface of the body. 

It should be particularly noted that ri3, 917 have the same order of 

magnitude as rll, qll, 'Ihis means that on axi-symmetric bodies, in con- 

trast to plates, the thickening of the boundary layer for IV= >> 1 by it- 

self irrespective of the rise in pressure due to the interaction leads 

to an increase in the frictional resistance and the heat transfer. This 

phenomenon can be shown to be important also in those cases in which the 

effect of the boundary layer on the external flow will not play an im- 

portant part, for instance, on the forward part of the lateral surface 

of a blunt body. 

Fig. 2. 

'Ihe limit of application of the obtained results can be estimated from 

the condition ys/&, x << 1. In order that one may neglect a quantity of 

order E 2 it is sufficient, for instance, that c = ya/&x4: l/7. 

In this case for F, = F, = 1 it must follow from (4.3) that 

K, > 0.1; M," ii,,” lor r Ic: 3 0.1 (L:,pa, ,’ $tp,) for i,, z 0 

N, > 211fW" : rjO’ or’ 3^ > 1.5 (tTaJ[L, ’ !3,‘Lp,) for i,, = i, ~2 0.17 M,“im 

Such a procedure gives, generally speaking, the possibility of deter- 

mining that distance from the nose L = x0 at which one can then make use 

of the approximate equations of the method of small perturbations, but 

it has the defect inherent to all boundary layer theories that it does 

not take into account the effect of downstream separation on the point 

n = x0 of either the exact solution or the approximate solution obtained 

above. 
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limiting value '15 = 0.98t0.999, assumed above, is to a certain 

conditional and is chosen from the following considerations. 

M2= I/cz~/~~~ >> 1 the difference ia - 1 (u - l)(l- ~s)/cI~&~ 

is of order unity for ~16 = 0.98t0.99 and is close to zero for 776 > 0.999. 

Consequently, for 71 < 0.98 the effect of viscosity is quite noticeable, 

and for '1 > 0.999 it is negligibly small. On the other hand, because in 

the main body of the boundary layer i - l>> 1, the boundary conditions 

can be considered to be satisfied in the indicated range both for the 

velocity and for the enthalpy. 

We note that the magnitude of ya is practically unchanged in the limits 

71s = 0.98t0.999, which follows from a comparison of the functions h and 

h 0' 

The method described may be applied also to blunt cones, if the degree 

of the bluntness is not great. In this case at some distance from the 

nose the field of flow, constructed without taking the boundary layer 

into account, will differ slightly from the conical flow field and the 

effect of this difference on the boundary layer can be taken into account 

independently in the linear construction [lo 1. 

Appendix to Section 3.We will examine the equation 

g:i; -t (1 g)g,&i,, + B,,, VF h) i, == 1 

or in self-conjugate form 
YE 

This equation has two linearly independent solutions jl, and j2a, such 

that 

jr, -(--g:)+,, j,, - gz(-gg:)@m-l as 9' 1 

We will prove that the solution which satisfies the condition j;(O)= 0 

can belong only to the type j,, = j,* if 0 < /3, < 1. 

Equation (1) reduces to the form: 

d'i,,, &,, rlF 
? 

-=---ji,,t= 
dta gz’ s 

g:-id-q 

0 

For 7 < 1 a theorem of Chaplygin is applicable to this equation, 
according to which j, ( j, if PI > @, and jl = jz, jl’ = jz’ for q = 0. 

For /3, = 1 equation (1) has the solution j. = 8. Using (1) we con- 
struct the difference: 
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Integrating (3) for j,‘(O) = 0, we obtain 

(3) 

If j, = jzn. then, as is easily seen, the left-hand side of (3) 
vanishes as 7 + 1 like g* (- g’.)prn-l, and th e integral on the right con- 

verges; therefore, the equaligy (3) is not possible. Consequently, j, = 

right-hand and left-hand sides of (3) are equal to 

J 1. Hence the assertion of Section 3 is proved. The 

for o = 0.725 are presented in Table 2: 

TABLE 2. 

, 

rl IO 
I 

.* 
ll 1 

.* 
I2 1 

- 

- 
0.20 

0.996 

0.999 

0.40 

0.980 

0.992 

0.60 

0.943 

0.959 

0.70 

0.910 

0.927 

0.80 0.90 

0.864 0.790 

0.884 0.817 

- 

_ 
0.95 I 0.97 

0.725 0.684 

0.762 0.715 

- 

- 
0.99 1 I 

0.616 ‘I 

0.648 0 
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